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We study a system of globally coupled FitzHugh-Nagumo equations. Each unit is either excitatory or
inhibitory. If the numbers of units of both types are in a specific ratio, we observe the presence of multistable
oscillatory states with different excitation or firing rates. In the presence of noise, there is noise-driven switch-
ing between these states and the resultant firing pattern is long-range correlated. The choice between higher and
lower frequency oscillations depends on the input, which results in increasing adaptability of the system’s
output to the periodic input.
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I. INTRODUCTION

Stable biological oscillators are usually modeled by limit
cycles �1,2�. Limit cycles show stability in their “activity,”
when evaluated by both the amplitude and frequency, over a
wide range of control parameters, including external force.
For example, in neural models such as FitzHugh-Nagumo
�FHN� �3� and Hodgkin-Huxley �4� equations, the activity
does not change much when they are forced by inputs above
their “firing” threshold.

In contrast, networking limit cycles �1,5� or general non-
linear elements �6� are known to produce diverse spatio-
temporal �synchronized� patterns with different frequencies
and amplitudes, giving rise to variable activity levels over
the whole network. Each pattern corresponds �in a broad
sense� to a stable attractor, and the existence of multistable
attractors with different activity levels may account for di-
versity or variability in real-world oscillators, including bio-
logical ones.

Here we consider the adaptability issue, which is one of
the unique characteristics of living organisms. Such a char-
acteristic is widely observed: a network of neurons or neural
assemblies showing limit cycle type behavior, like the brain,
changes its dynamics by sensory inputs. A population of bio-
logical organisms, modeled by coupled oscillators �1,7� may
need to change its activity depending on the physical and/or
chemical surroundings. The question to ask is whether the
selection of multistable attractors in coupled oscillators de-
pends on the level of external forcing, meaning that the net-
work activity is coherent with the forcing. To our knowledge,
this rather intuitive problem has never been studied in an
explicit manner.

In the present paper, we study a system of globally
coupled suprathreshold FHN equations with external forcing
and noise. Each unit is either excitatory or inhibitory. If the
numbers of units of both types are in a specific ratio �bal-
anced coupling�, we observe the presence of multistable os-

cillatory states with different excitation �firing� rates, and
switches between high- and low-frequency oscillatory states
can occur easily in the presence of noise. In the presence of
an optimal level of noise, in particular, the system demon-
strates considerably improved coherence between the exter-
nal forcing and the mean firing rate, similar to what is known
as the stochastic resonance �SR� �8,10� and coherence reso-
nance �9�, indicating that the selection of multistable attrac-
tors with different activity levels is statistically more “or-
dered” in response to the changes in the external forcing. We
conclude that the coexistence of inhibitory and excitatory
connections and the noise effect is a key to observing higher
adaptability in this network of nonlinear oscillators.

II. THREE GLOBALLY COUPLED
FITZHUGH-NAGUMO EQUATIONS

We consider a system of coupled units whose dynamics is
described by the FHN equations,

�v̇i = vi�vi − a��1 − vi� − wi + I + S�t� +
1

N
�
j=1

N

kij�v j − vi� + �i�t� ,

ẇi = vi − wi − b , �1�

where �=0.005, a=0.5, b=0.15, I is a constant input, S�t� is
a time-dependent input, i , j=1, . . . ,N, �i�t� is Gaussian white
noise with ��i�t�� j�s��=2D�ij��t−s�, where �¯� denotes the
ensemble average, and 2D ·�t= ��i

2�t��=�2 in the discrete
case. We assume that each unit provides only one type of
connection �excitatory or inhibitory� to other units, and is
therefore referred to as either excitatory or inhibitory. If the
jth unit is excitatory then kij �0 and if it is inhibitory kij
	0. Computations are performed using the stochastic second
order Runge-Kutta algorithm �11� with the time step of
0.002.

For a single uncoupled unit, there is a stable stationary
solution for small I. At I0�0.11 a Hopf bifurcation produces
a stable limit cycle, which corresponds to the excited �or
firing� state of the unit.
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The adaptability of excitation or firing rates in the su-
prathreshold regime to changing levels of I can best be un-
derstood by studying the system’s dynamics for N=3 with
four possible choices of the number of excitatory units �NE�.

A. NE=1

First, we study the case of three units, one of which is
excitatory and the other two are inhibitory, without noise.
The coupling strength of each connection is taken to be equal
to 	k	=0.3 with a corresponding sign.

At I1�0.057 there is a double resonant Hopf bifurcation,
at which two stable limit cycles emerge. They have two fir-
ing units and one silent, and are located in the following
invariant subspaces:

x1 = C, x2 = x3; �2�

x3 = C, x1 = x2, �3�

where xi= �vi ,wi� and C is a constant value �“resting poten-
tial”�. The plots of v variables of these cycles are shown in
Fig. 1 �left-hand and central columns�.

Along with the two cycles, there is a third stable attracting
set �with all three units firing� emerging at or near the double
Hopf bifurcation and located in the invariant subspace,

x1 = x3. �4�

With a growing parameter I, it has the form of a limit cycle
for most of the parameter values. A typical firing pattern for
this cycle is shown in Fig. 1 �right-hand column�. Figure 2
shows the dependence on I of the two Floquet multipliers of
this limit cycle with the largest absolute value �12�. At cer-
tain parameter values, this cycle undergoes bifurcations
transforming it into a higher-periodic attracting set �possibly
nonperiodic for some parameter values� with the period de-
pendent on the parameter. Figure 3 gives examples of firing
patterns of this attractor for I values for which it is not a
simple limit cycle.

In the following, we refer to these three attractors as at-
tractors 1, 2, and 3, respectively. Attractors 1, 2 are also

referred to as limit cycles 1, 2, because they do not take any
other form.

Multistability in coupled FHN equations has been studied
in Ref. �13�, and in a single FHN equation with periodic
forcing in Ref. �14�. The former paper deals with two units
with mutually inhibitory coupling, and it is known that inhi-
bition is important for producing multistability in neuronal
models �15�.

With increasing I, we observe that the firing rate �number
of spikes per time unit� R of cycles 1 and 2 grows rapidly
over a short parameter interval, after which it changes only
insignificantly �Fig. 4�. In contrast, the firing rate of attractor
3 grows slowly with I for a long interval, after which it
stabilizes.

At I0�0.11 �as in the single unit case� there is an ordi-
nary Hopf bifurcation, where the stationary solution becomes
globally unstable and a new limit cycle emerges. In the
present study we consider values of I between I1 and I0,
where the firing rates of all the attractors are relatively stable
�shown by shaded areas in Figs. 2, 4, 13, and 14�. In this
regime, no stable attractor solely has a sufficient rate coding
ability for the external input I; see flat curves in Fig. 2.

From numerical simulations, we find that the domain of
attraction of the stationary solution coincides with the sub-
space

FIG. 1. Firing regimes for
attractors 1 �left-hand side�, 2
�center�, and 3 �right-hand side�.
N=3, NE=1, I=0.07. The second
unit is excitatory �e�, the others
are inhibitory �i�.

FIG. 2. Two Floquet multipliers with the largest absolute value
of attractor 3 for I values for which it is a simple limit cycle.
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x1 = x2 = x3, �5�

the domain of attraction of attractor 3 is located around the
subspace �4� except subspace �5�, while cycles 1 and 2 attract
trajectories originating from the rest of the phase space.

In the presence of weak noise, the system performs ran-
dom transitions between domains of attraction of the three
attractors �Fig. 5�. This is similar to a phenomenon known as
chaotic itinerancy �CI� �6�. CI has been observed in various
natural systems and evidence of it has been found in neural
ensembles �16,17�. It has also been demonstrated by neu-
ronal models �18–22�. CI is characterized by successive vis-
its by an orbit to vicinities of low-dimensional structures
�“attractor ruins”�. These structures have different synchro-
nization properties, and escape from an attractor ruin follows
a restricted path, which makes the dynamics different from
random hopping among attractors. The difference with our
system is that instead of chaotic attractors, we have limit
cycles, and the role of noise is to induce itinerant dynamics.
In addition to chaotic itinerancy other types of complex be-
havior in neural systems related to transitions between attrac-
tors have been studied, such as winnerless competition �23�.

It has been suggested in Ref. �6� that hopping between
attractor ruins in CI is not random but adheres to certain

constraints. In our case, transitions between cycles 1 and 2
do not occur, and the only transitions possible are 1↔3↔2.
This is related to the fact that cycles 1 and 2 lie in such
invariant subspaces ��2� and �3�� that in order for a transition
between them to occur, an orbit must come close to the sub-
space �4�, which belongs to the domain of attraction of at-
tractor 3. Such alternations between fully and partly synchro-
nized dynamics have been observed in globally coupled
chaotic maps �6�.

One of the characteristic features of CI is power-law cor-
relations. It has been conjectured in Ref. �24� that a multi-
stable system with noise-induced jumps between attractors
exhibits 1 / f
 power spectrum at low frequencies with 


0.5–1.5. Similar phenomena have been found in an itera-
tive map �25� and in a semiconductor laser model �26�.
Power-law temporal and spatial correlations are also one of
the characteristic features of brain dynamics �16�.

Similarly, in our study we observe the presence of 1 / f
dynamics for small noise �e.g., �2=2�10−9�. Figure 6 pre-
sents power spectra of instantaneous firing rates �IFR �27��
of excitatory and inhibitory units with I=0.09. It can be seen
that spectral properties of excitatory and inhibitory units are
different.

This difference is related to the different firing patterns of
these types of units �Fig. 5, left-hand side�. As was argued in
Ref. �6�, the emergence of long-range correlations in chaotic
itinerancy results from the fact that the itinerancy between
attractors is not random, but follows a certain restricted path.
Due to this the system retains memory about previously vis-
ited attractor ruins, and the resulting orbits are history depen-
dent. In the system under consideration, an inhibitory unit
iterates between three firing patterns, while an excitatory unit
has a choice of only two. Since the visits to cycle 3 are very
brief compared to visits to cycles 1 and 2 �except for very
small noise�, an inhibitory unit essentially iterates between
silent and fast-firing patterns, only briefly passing to the
slow-firing one, and the memory is generated only regarding
the former two states. On the contrary, an excitatory unit
stays almost exclusively in the fast-firing pattern, occasion-
ally and briefly jumping to the slow-firing one, so that the
long-term memory is not created, and long-range correla-
tions are absent.

FIG. 4. Dependence of the firing rate on the input I for N=3 and
NE=1. Upper line, high-frequency regimes �cycles 1 and 2�; lower
line, low-frequency regime �attractor 3�.

FIG. 3. Firing patterns of attractor 3 for I
=0.0715 �left-hand side� and I=0.0725 �right-
hand side�.
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The system also demonstrates phenomenon similar to SR
in rate coding. We apply periodic input S�t� to all units and
plot the coherence measure

C0 = S�t�R�t� ,

�where R�t� is the IFR and the overbar denotes the time
average� against the noise intensity. As in the case of corre-
lations, excitatory and inhibitory neurons have different
properties.

Figure 7 shows the dependence of C0 on the noise inten-
sity for different baseline input and amplitude of periodic
input. We can observe the bell-shaped curve, especially for
IFR of excitatory units, characteristic of SR. This phenom-
enon resembles suprathreshold stochastic resonance studied
previously �28�, but has a different dynamical nature, as ex-
plained below.

Figures 8�a�–8�d� show sample spike trains of an excita-
tory and an inhibitory unit for weak and moderate noise in-
tensities, respectively. Although for most of the time the sys-

tem stays near attractors 1 or 2, occasionally it jumps to
attractor 3, and the probability of such a transition is higher
for lower input than for higher input.

Limit cycle oscillations on all attractors consist of spike
�action potential� time and silent �resting potential� time.
With the increase of firing rate, the spike time remains al-
most the same, while the resting time decreases. Transitions
between the attractors are most likely during the resting time
when the distance to other attractors is minimal. Since this
time is longer for lower input, a switch to another attractor is
more likely to happen with a lower input. The average dura-
tion of a visit to attractor 3 is small compared to that of other
attractors, therefore a transition to attractor 3 near the mini-
mal input is followed by a switch to another attractor while
the input is still close to the minimum.

With stronger noise the transition probability becomes
higher, and the time spent by the orbit near attractor 3 is
greater. Therefore the resulting IFR of an excitatory unit is
more coherent with the input for moderate noise �Fig. 8�d��
than for weak noise �Fig. 8�b��. Thus, an increase of noise

FIG. 5. Itinerant oscillations in the presence
of noise. N=3, NE=1, I=0.09, �2=10−7 �left-
hand side�, 10−5 �right-hand side�. With strong
noise random firing dominates over limit cycle
oscillations �right-hand side�.

FIG. 6. Power spectra of IFR
time series of excitatory �top and
middle rows� and inhibitory �bot-
tom row� units for N=3 and NE

=1. I=0.09.
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from weak to moderate values leads to an increase in the
ability of excitatory units to encode the incoming signal �Fig.
7�. When the noise becomes too strong, the coding ability
deteriorates, giving the bell-shaped curve of C0, characteris-
tic of SR.

Unlike excitatory units, inhibitory ones have three pos-
sible firing regimes—a high frequency and a silent one at
attractors 1 and 2, and a low-frequency one at attractor 3.
Therefore, the IFR of an excitatory unit coincides with that
of an inhibitory unit only for part of the time, otherwise it is
zero. This results in a worse coding ability compared to that
of an excitatory unit, which is shown by the lower SR-type
response in Fig. 7.

A comparison of IFR with the periodic input S�t� for all
three units for weak, moderate, and strong noise is given in
Fig. 9.

B. NE=0

In this case, we set 	k 	 =0.1. With this condition fulfilled,
there is a double Hopf bifurcation at the same value of I as
for NE=1 and 	k	=0.3. There are three limit cycles emerging
at this bifurcation, which are located in invariant subspaces,

x1 = x2, �6�

x2 = x3, �7�

x1 = x3. �8�

All of these cycles are 2:1 synchronized, and there are no 3:0
synchronized attractors. Moreover, they are all globally
stable and no noise-driven switching is observed.

Two of these cycles are shown in Fig. 10 �left-hand and
central columns�. Apart from these cycles, there is a limit
cycle with all units desynchronized �right-hand column�,
which does not belong to an invariant subspace that could be
defined from the system’s symmetry, and the origin of which
is unclear. In the presence of noise, transitions between

FIG. 7. Stochastic resonance-type responses in a system with
N=3, NE=1 for excitatory and inhibitory units. S�t�
=0.003 sin�2�t /30�. Results are averaged over 200 trials. Total
time for each trial T=600.

FIG. 8. Time series of excitatory and inhibi-
tory units with a periodic input. �2=10−8, �a� in-
hibitory unit, �b� excitatory; �2=5�10−7, �c� in-
hibitory unit, �d� excitatory. N=3, NE=1, I
=0.09, S�t�=0.003 sin�2�t /30�. Shaded areas de-
note visits to attractor 3. Sinusoid lines schemati-
cally represent the input.
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cycles do not occur. As for the case NE=1, subspace �5�
contains a stationary solution.

Due to the absence of itinerancy, we do not observe
power-law dynamics and input-dependent selection of attrac-
tors induced by noise.

C. NE=2 and NE=3: Definition of balancing

In these cases there are no bifurcations for I	 I0, hence no
stable attracting set other than the stationary state exists in
that interval.

Therefore the case of NE=1 has special significance. For
NE=1 we observe CI-like dynamics accompanied by power-
law behavior with small noise and improved coding ability
with increasing levels of noise, while for lower and higher
NE the system’s dynamics is much simpler and does not
qualitatively depend on noise. Our simulations show that this
is the case for N�3 as well. In order for the switching to be
observed, it must hold that

NE = NE
0 = �N/2� − 1. �9�

Relation �9� gives the definition of balanced coupling, for
which the system has special properties described above.

For NE�NE
0 the firing threshold of the entire system is the

same as that of a single uncoupled unit �no Hopf bifurcations
take place for I I0�, while for NE	NE

0 the new threshold
I1	 I0 is present and multistability for I1	 I0 is observed, but
there are no transitions between the cycles.

It has been observed that the balancing of excitation and
inhibition can bring about complex dynamics in neuronal
models �29�, which can be related to variability of cortical
neuronal dynamics.

Simulations show that for any NE�NE
0 it is necessary to

have

	k	 � 0.1 · N/�N − 2NE� �10�

in order to keep the first Hopf bifurcation at the same param-
eter value �or to keep the system in the same firing range� as
in the case described above for N=3, NE=1, and 	k	=0.3
�with I1�0.057�. Stronger coupling leads to a greater de-
crease in the firing threshold.

Numerically we have found that �9� and �10� are valid for
at least N�50. These rules also hold for the trivial case of
N=2, where there are no bifurcations for NE=1 and 2, while
for NE=0 there is an ordinary Hopf bifurcation at I1 and
there is no multistability.

FIG. 9. Instantaneous firing
rate vs periodic input for all three
units with different noise intensi-
ties: �2=10−8 �left-hand side�,
�2=5�10−7 �center�, �2=10−5

�right-hand side�.

FIG. 10. Firing regimes for
three different limit cycles for N
=3, NE=0, I=0.07, k=0.1. Left-
hand and central columns, two
units synchronized; right-hand
column, all are desynchronized.
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In the following section, we present a detailed study of
the balanced case of N=4 and NE=1.

III. FOUR FHN EQUATIONS WITH NE=1

This case is similar to the case with N=3 and NE=1 with
some notable differences. With balancing conditions �9� and
�10� satisfied, there is a triple resonant Hopf bifurcation at
I�0.057 and 11 multistable attracting sets exist for I1 I
0.090 illustrated in Figs. 11 and 12 �each graph shows one
of vi�t� plots marked by a letter�. At I�0.080 they have the
following form:

�i� a stationary solution �invariant subspace x1=x2=x3
=x4�;

�ii� a fully synchronized �4:0� limit cycle,

�a�,a,a,a� �11�

�subspace x2=x3=x4, a shown in Fig. 11�1�, a� in Fig.
12�1��;

�iii� three 3:1 synchronized limit cycles,

�b,c,b,b�, �b,b,c,b�, �b,b,b,c� �12�

�subspaces x1=x3=x4, x1=x2=x4, and x1=x2=x3; b shown in
Fig. 11�4�, c in Fig. 11�7��;

�iv� three 3:1 synchronized limit cycles,

�c,b,c,c�, �c,c,b,c�, �c,c,c,b�; �13�

�v� three 2:2 synchronized limit cycles,

�g,g,0,0�, �g,0,g,0�, �g,0,0,g� �14�

�subspaces x1=x2, x3=x4=C; x1=x3, x2=x4=C; and x1=x4,
x2=x3=C; g shown in Fig. 12�7��. It is assumed that the first
unit is excitatory and the other units are inhibitory.

With decreasing I these limit cycles undergo significant
transformations. The behavior of the fully synchronized limit
cycle �11� is similar to that of the cycle 3 for N=3, NE=1
�Sec. III A�. At certain parameter values below �0.071 the
limit cycle loses stability, and there are intervals of I values,
where oscillations have a larger period and are possibly ape-
riodic. The dependence of two Floquet multipliers with the
largest absolute value of I is shown in Fig. 13. Examples of
nonlimit cycle oscillations are given in Figs. 11�2� and 11�3�.

The 3:1 synchronized limit cycles also demonstrate trans-

FIG. 11. Firing patterns for
N=4, NE=1, k=0.2. �1�, �4�,
�7� I=0.080; �2� I=0.0707; �3�
I=0.0704; �5�, �8� I=0.0741; �6�,
�9� I=0.0710.

FIG. 12. Firing patterns for
N=4, NE=1, k=0.2. �1�, �7�
I=0.080; �2� I=0.0741; �3�
I=0.0710; �4�, �5�, �8� I=0.0925;
�6�, �9� I=0.0942.
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formations with decreasing I. At I�0.076 they �13� bifurcate
into 2:1:1 synchronized attractors

�d,b,d,c�, �d,c,b,d�, �d,d,c,b� �15�

with d-units firing at a higher frequency �shown in Figs.
12�2� and 12�3��. However, cycles �12� do not undergo such
bifurcation and remain 3:1 synchronized. At lower I values,
all units with b, c, and d patterns undergo bifurcations simi-
lar to those of the attractor �11� with alternating intervals of
a simple limit cycle and more complex oscillations as I de-
creases. Examples of b, c, and d patterns for some parameter
values are given in Figs. 11�5�, �6�, �8�, and �9� and 12�2�,
�3�, �5�, and �6�. The dependence of the firing rate of all
patterns on the input is shown in Fig. 14.

With the increase of I, another three stable limit cycles
emerge at I�0.090.

�vi� 3:1 synchronized limit cycles,

�e�, f ,e,e�, �e�,e, f ,e�, �e�,e,e, f� �16�

�subspaces x1=x3=x4, x1=x2=x4, and x1=x2=x3, Figs.
12�4�–�6�, 12�8�, and 12�9��.
As I increases further, they demonstrate complicated trans-
formations, and the resulting firing patterns are shown in Fig.
12. These cycles also exist for I	0.090 and are unstable
there, although they still attract trajectories in the presence of
noise.

In the presence of noise for I0.076, there is itinerant
dynamics between attractors �11�, �12�, and �15�. With a pe- riodic signal and small noise, an orbit is most likely to stay

near a low-frequency attractor �12� and the probability of
transition to a high-frequency attractor �11� or �15� is higher
for lower input than for higher input. This results in negative
correlations between the periodic input and the IFR of a
single excitatory unit.

For higher I, the d-type high-frequency oscillations are
not present and the intermittent dynamics takes place be-
tween �11�–�13� and �16�. The probability of choosing a
high-frequency attractor is higher at a maximal input, there-
fore the C0��2� dependence becomes similar to that of the
case of N=3, NE=1 �Figs. 15�b� and 15�c��. With I�0.09 no
SR-like dynamics is observed.

For all I values, limit cycles �14� are never visited. Since
firing patterns of excitatory and inhibitory units do not have
significant differences, their spectral properties are also simi-
lar, unlike in the N=3, NE=1 case.

FIG. 13. Two Floquet multipliers with the largest absolute value
of the attractor �11� for I values for which it is a simple limit cycle.

FIG. 14. Dependence of the firing rate of different firing patterns
on the input I for N=4 and NE=1. The letters correspond to Figs. 11
and 12.

FIG. 15. Stochastic resonance-type responses in a system with
N=4, NE=1 for excitatory and inhibitory units. S�t�
=0.003 sin�2�t /30�. Results are averaged over 200 trials. Total
time for each trial T=600.
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IV. HIGHER DIMENSIONS

From examining the cases of N up to about 50, we can
conclude that higher-dimensional cases can be reduced to
those of N=3 and N=4, provided balancing conditions �9�
and �10� hold.

For all N, there is a multiple Hopf bifurcation at I1 with
N−1 pairs of equal eigenvalues crossing the imaginary axis,
producing a number of limit cycles.

For odd N, there are many different limit cycles, but tran-
sitions take place only between NE of N :0 synchronized
cycles �analog of cycle 3� and N−NE of �N−1� :1 synchro-
nized cycles with one silent unit �analogs of cycles 1 and 2�.
The dynamics of an excitatory unit is not different from that
for N=3 �it also iterates between high- and low-frequency
oscillations�. For an inhibitory unit, since a shorter time is
spent in the silent regime with growing N �because there are
N−NE cycles with only one unit silent�, the dynamics be-
comes similar to that of an excitatory unit. SR-like properties
of systems with higher odd dimensions are also similar to
those of systems with N=3. Figure 16 shows the C0��2�
dependence for N=15 and N=31 with the same input.

For even N the dynamics is more complicated, but similar
in general to the N=4 case. It should be noted that for higher
dimensions, the findings described �multistability, CI-like dy-
namics and adaptability to the input� are observed only if the
balancing condition �9� is satisfied. Changing the number of
excitatory units by just one results in a dramatic change in
the dynamics, i.e., for higher N the case of NE=NE

0 −1 is
equivalent to the case of NE=0 for N=3, and the case of

NE=NE
0 +1 is equivalent to the case of NE=2 for N=3.

This is related to the mode of coupling in Eq. �1�. For
each equation the coupling term is equivalent to the same
sum of excitatory and inhibitory influences regardless of the
system size, and the removal or addition of a single unit
results in the same changes for any N.

The strict balancing condition �9� can be weakened by
introducing a different mode of coupling such that a minor
change of excitatory and/or inhibitory units does not signifi-
cantly affect the balanced system’s encoding ability. For ex-
ample, we consider a synapse-type coupling mode adopted
from Ref. �30�,

�v̇i = vi�vi − a��1 − vi� − wi + I + S�t� +
1

N
�
j=1

N

kijG�v j� + �i�t� ,

ẇi = vi − wi − b , �17�

where G is a sigmoidal function G�x�=1/ (1+exp��−�x
−��� /
�) with the threshold � and the width 
. We present
here a test case of N=26 with �=0.5, 
=0.3, and all kij
=0.04.

For NE�13 there is no firing for subthreshold input,
while for NE�17 there is a single firing regime with the
firing rate insignificantly changing with I. In contrast, for
14�NE�16 there is a multistability of at least two firing
regimes with noise-induced transitions between them. Figure
17 shows typical spike trains from units of both types for
NE=14. While multistability and itinerant behavior are ob-
served for all three values of NE, the coding ability deterio-
rates with the increasing number of excitatory units �Fig.
18�a��. However, the deterioration is not as abrupt as that for
the system �1� �Fig. 18�b��.

Whether different equations other than FHN with dynami-
cal coupling would lead to a looser balancing condition re-
quires further research; such generalizability may be impor-
tant if this model is to be used as an architectural, not a
functional, model of the brain.

FIG. 16. Stochastic resonance-type responses in a system with
N=15 and N=31 for excitatory and inhibitory units. S�t�
=0.003 sin�2�t /30�. Results are averaged over 200 trials. Total
time for each trial T=600.

FIG. 17. Firing patterns of inhibitory �a� and excitatory �b� units
of system �17�. I=0.075. The inhibitory unit oscillates between
slower and faster firing regimes.
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V. DISCUSSION

Collections of nonlinear oscillators encountered in bio-
logical organisms are frequently quite adaptable to changes
in the external environment. The brain, for instance, is a
highly adaptable organ in spite of the limited short time plas-
ticity embedded in single oscillators and/or their connection
strengths. Indeed, recent studies have shown that brain-wide,
frequency-specific neural synchrony and asynchrony, or the
dynamical attractor selection among multiple neural oscilla-
tors, seem to be involved in the generation of perceptual,
cognitive and behavioral processes in response to external
and/or internal stimuli �31�. In the present study, we have
examined a simple model of this sort of emergent adaptabil-
ity by using small dimensional coupled FHN oscillators.

The key finding here is that, when the numbers of excita-
tory or inhibitory oscillators are in a specific relation, or the
system has balanced coupling, the addition of intermediate
noise considerably increases covariance between input exter-
nal forcing and the mean oscillatory rate or the activity levels
over the whole network, just like what is known as the SR
phenomenon �8,10�. This noise-induced adaptive response in
coupled oscillators is associated with noise-driven switching
among multistable limit cycles, of which the dynamics have
a long-range time correlation.

We have studied the detailed dynamical structures of
these multistable limit cycles in the presence of noise to ex-

plain why the selection of multistable attractors with differ-
ent activity levels is statistically more ordered in response to
the changes in the external forcing. It has been found that the
chance of a revisit to a subspace containing low-frequency
limit cycles is higher for lower external forcing. Thus, we
have found a phenomenon leading to network adaptability
due to the statistically ordered selection and/or deselection of
multistable attractors with different intrinsic frequencies.

The beneficial role of noise in biological systems has in-
deed been extensively studied over the past decade, espe-
cially for the phenomenon of SR �8,10�, which is generally
defined as the optimization of responses of a nonlinear sys-
tem to a weak input signal caused by external noise. For
instance, in neural systems SR has been shown to optimize
sensitivity of sensory neurons �32�, which may lead further
to the enhancement of perception and/or behavior in animals
�33� and humans �34�.

As a natural extension to these studies, it has recently
been demonstrated that externally added noise can enhance
input-output coherence within the human brain �35–38�. The
improved responses were observed at the level of the brain
stem neuronal networks, where the neurological noise can
help trigger changes in heart rate in response to small
changes in blood pressure �35,38�, as well as at the level of
the cortices, including the visual areas, where visual noise
can enhance responses in the brain waves �36� and behav-
ioral output �37� to weak visual signals. These results indi-
cate that the brain can also work as a stochastic resonator.

However, unlike dynamical systems such as overdamped
bistable systems or monostable systems with a response
threshold—the latter being used as a model of a sensory
neuron—for which the theory of SR has been rigorously
studied �10�, neuronal networks within the brain may not
have a definite threshold or bistability. Rather, the brain can
be regarded as mutually coupled excitable and/or oscillatory
units �31� capable of showing multistable dynamics, with
only a limited number of distributed local networks of neu-
rons interacting together involved in cortical information
processing �15,31� and brain stem neuronal dynamics �39�,
but including both excitatory and inhibitory connections
�15,39�.

Our model is in fact equipped with many such global
dynamical signatures of the brain at work, namely mutual
interaction between local neural assemblies �31�, the exis-
tence of ongoing dynamics, which is often long-range corre-
lated �40�, the emergence of transient synchronization and
desynchronization �31,41,42�, and SR-like behavior �35–38�.
As such, it is highly relevant for the study of the global
dynamics of the brain under the influence of both internal
and external noise.
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FIG. 18. Stochastic resonance-type responses in system �17� for
excitatory and inhibitory units. The results are averaged over 200
trials. Total time for each trial T=600. �a� System �17� with N
=26 and I=0.075+0.005 sin�2�t /30�. �b� System �1� with N=26
and I=0.080+0.003 sin�2�t /30�.
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